
P H Y S I C A L R E V I E W V O L U M E 13.6 , N U M B E R 5 B 7 D E C E M B E R 1 9 6 4 

Photon as a Symmetry-Breaking Solution to Field Theory, II*f 
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A spin-zero field coupled to itself by a current-current interaction is examined subject to the requirements 
that the vacuum expectation of the current be nonvanishing. It is found that this theory is equivalent to the 
ordinary electrodynamics of a spinless particle. In all its broken-symmetry aspects the theory is similar to the 
Bjorken theory for Fermi particles, although the calculations necessary to arrive at this conclusion are more 
complex. 

INTRODUCTION 

IN the preceding paper1 (hereafter referred to as I) we 
discussed the restrictions imposed on a theory where 

the vacuum expectation of a vector operator j11 is re­
quired to be nonvanishing. As a specific example a 
Fermi field interacting with itself through a current-
current interaction2 was considered. I t was found that 
this theory reproduced the electrodynamics of a spin-J 
particle. This theory was particularly interesting and 
suggestive because it demonstrated that through the 
appropriate identification of terms an unrenormalizable 
theory involving one field can be transformed so as to be 
equivalent to a renormalizable theory involving two 
fields. In this paper we shall perform the analogous 
manipulation for a two-component self-coupled spinless 
field. These manipulations will lead to the normal 
electrodynamics of spinless particles. The underlying 
broken-symmetry structure will be found to be essen­
tially identical to that found for the Bjorken model. 

L DERIVATION OF THE GREEN'S FUNCTIONS 

The Lagrange density is taken to be 

-hoUH^T^H^l+J^g^l • (i.i) 
The two component fields <j> and <£M are Hermitian and 

the matrix g = or2. From (1.1) we may derive the usual 
equal-time commutation relations 

and 
(1A)[<^W^°(^)],O-O' = ^ ( X - X O . 

= 0 

By varying 0" and <f> in Eq. (1.1) we find the field 
equations 

Zd»+goijfi'q-iJflq~]<l>= -<£* (1.2a) 
and 

[a"+go/y"-g—f/^>M+w20=o. (i.2b) 
* Parts of this paper were contained in a thesis submitted to 

Harvard University in partial fullfilment of the requirements for 
the Ph.D. degree. 

f The research reported in this document has been sponsored in 
part by the Air Force Office of Scientific Research OAR, through 
the European Office Aerospace Research, U. S. Air Force. 

J National Science Foundation Postdoctoral Fellow. 
1 G. S. Guralnik, preceding paper, Phys Rev. 136, B1404 (1964). 
2 J. D. Bjorken, Ann. Phys. 24, 174 (1963). 

In these equations the convenient definition j ^ 
has been made. I t is easily verified that dlxj

lx=0. We now 
break the Lorentz symmetry by imposing the condition 

<0cri | j> 10cr2> 

<0cri|0er2> 
= *?«(*) | ^ 0 = 1 7 ^ 0 . (1.3) 

The possibility of making this requirement hinges on 
the intrinsic ambiguity in the meaning of the product 
of two field operators at the same point in space-time. 
In electrodynamics this product is understood through 
a gauge-invariant averaging procedure which precludes 
the realization of (1.3). As was found in I, the concurrent 
validity of both current conservation and Eq. (1.3) is 
very dependent on how this equal time product is 
defined through a cutoff procedure in the Green's-
function realization of (1.3). The same observations will 
be found to apply here. 

If the new operator 

Zy^= dv+goijvq—iJfq 

is introduced, Eq. (1.2a) becomes 

£>'/ty=-0M (1.2c) 

while Eq. (1.2b) becomes 

ZV0M-m20=O. (1.2d) 

Combining these we find the familiar equation 

[ - Z V # ' H - w 2 > = = 0 . (1.4) 

Equation (1.4) establishes the equivalence of the usual 
first-order formalism3 to the second-order formalism. 

I t is convenient to study the two boson propagators. 

G(x,y) = i-
<Gcri|fo(*)*G0)+|Q*2> 

and 

GfX(x1y) = i-

<Ori|0cr2> 

< O r i | ( ^ ( ^ ( y ) ) + | 0 t r 2 > 

(1.5) 

(1.6) 
(0a1\0a2) 

From the field equations it is found that these two 

3 Julian Schwinger, unpublished lecture notes, Harvard 
University. 
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propagators are related through the equation 

G»(x,y) = -

G U R A L N I K 

dz"—iJf(x)q+goir]fZ(x)q 

-id 

8Jfx(x) 

I t we make the convenient definition 

-id 

With this device, Eq. (1.7a) may be written as 

Gfi(x,y) = — [d^+iA^q 

+gwDr(xy)id/6A>(y))y;(x,y) (1.7c) 

G(xy) . (1.7a) w ^ l e EcL* ( l-8 a) becomes 

[dJ+iA »q+goqD<"(x,y) (8/8Av(y) )]GM(*,;y) 

= 8(x—y) — m2G(x7y). (1.8b) 

DX'H ) = dx»-iJ"(x)q+g&ri'l(x)q+gf>iq 
\ 8 J I L 8Jv.(x)A 

Eq. (1.7a) may be written in the compact form 

-id\ 
G*(x,y)=-D9'^—)G(^,y). (1. 

In ordinary electrodynamics, corresponding to (1.7c) it 
is found that 

G"(x,y) = - Id^+iA e»q+eoqDe»
v(xy) (8/8A e

v(y) )]G(x,y) 

while corresponding to (1.8b), we find 

7b) [dx"+iA e»q+eoqDe<"(x7y) (8/8A /(y) )]GM(xy) 

= 8 (x—y) — m2G (xy). 
The field equations and the commutation relations then Here 
require that {Oai\A^\0a2) 

D^(^JGlx(xJy)==8(x-y)-m2G(xJy). (1.8a) a n d 

Combining (1.7b) and (1.8a) it is found, corresponding 
to Eq. (1.4), that 

Dr^i-

A v= 
<0(7i|0<72> 

(OnUAxWA'W+lQat) 

(0^i|0o-2) 

A " is the ordinary vector potential. I t is thus clear that 

t __£)/// )£) /( \-\-ni2 \Q=I (i 9) to within constant factors, Eqs. (1.7c) and (1.8b) are 

\ 8 J J \ 8 J I J 
We now introduce the suggestive notation 

<0cri|j>(ap)|0o-2> 
A*(x)=go Jfx(x) = g0nfx(x) — Jf(x) 

<0a-i|0(72) 

and define the function 

identical to the equations of electrodynamics if Z>" has 
the form claimed. In the limit that / / *=0, (1.7c) and 
(1.8b) differ from ordinary electrodynamics in as much 
as (A(i)j=o=go7jfi, while (.4/) ,7=0=0. This is of no con­
cern, as a constant potential has no physical effect. 

For the construction of D*v we consider the lowest 
approximations to G and G". These are found by 
neglecting the variational derivatives in (1.7a) and 
(1.8a). The basic equations are then D^{yyx)^{8Av(x)/8Jfi{y)) 

= -gfiV8(x-y)+g0G^(x,y). (1.10) G"(*,;y) = -ld^-iJ^(x)q+igm^(x)~]G{xy) 

I t will turn out that D»v(y,x) corresponds to the =—D»(x,£)G(£,y) (1.11a) 
photon propagator of ordinary electrodynamics. Thus and 
D»v(k) will be found to have a pole at k2 = 0. In Eq, 
(1.10) the auxiliary function Gftv(x9y) is defined as 

(0<ri\(Hx)j''(y))+\o<T2) 
GfXV(x,y) = i-

<0o-i|0cr2> 

i(0<Ti\Hx)\0a2) (O^lj^y)^) 

(Oo-ilOcra) (0o-i|0o-2> 

Zd^-iJ^q+igoqri^lG^x^^D^x^G^y) 

— 8(x—y) — m2G(xyy). (1.12) 

Here, the quantity Z> is 

D»(x£) = idx»(x-$)-iJ»(Qq8(x-!;) 

+igmil(i)Kx-i)~]-
Of coarse, the spatial indices x and £ of Z>(#,£) will be 

To facilitate this comparison to electrodynamics, left implicit in most of what follows. 
derivatives with respect to the external source / " are If (1.11a) is inserted into (1.12), we find that 
replaced by derivatives with respect to the "vacuum 
vector potential" A*. The chain rule shows that G= l/(-DaDa+m2). (1.13a) 

8Av{x) 8 8 
-=D»v{y,x) 

8J»(y) 8J»(y) 8Av(x) 8Av(x) 

Inserting (1.13a) back into (1.11a) yields 

G*= -Z>[ l / (Z>£>«+m 2 ) ] . (1.13b) 

file:///-/-ni2
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If we represent G in the form photon propagator. It is easily found that 

(-i8/8Jv(y))D»(x,8 = d(x-8qD»»(y,!t). (1.21) 
G(x,y) | j=o J e^ «>G(p)d*p, (1.14) D i f f e r e n t i a t i o n of Eq^ ( U 3 a ) for Q a n d t h e a p p l i c a t i o n 

it follows that of (1.21) results in the equation 

(-iB/6J,)G\j-o= -D>"ZGqGa+GagCr\. (1.22) 

In the same manner it is found that 
* ,30 | J -O= / -G»(x,y)\j=0= / -(ip"+igQqr]fi)G(p)ei^x-y\ (1.15) 

Equation (1.13a) then shows that — ibGJhJv \ j^o 

CW-mH^^W^-W- (L16a) s b c e —^{E^G-D^GQGa+GaqGl}. (1.23) 

A representation equivalent to (1.16a) that has all of • Gvti=iTrq(—idGli/8Jv) 
the q dependence in the numerator is fi H th t h 7>—0 

G(b)= 1 &+gm*)(£P+'»*+giMll-2g<*(rP)) G>'= ~iD™[gati TTG-TrDr(GGa+GjG)l. (1.24) 

(27r)S Zp2+tn2+goyy-4go2(vp)2 Inserting this into 
(1.17) 

Since j^—i^qcb11. the condition of broken symmetry . . x . . . , 
(1.3) may be written as w x t h / - 0 yields 

V-trq&ixx) (1.18) Dva{z_x)fKx_y) 

which, with the aid of Eq. (1.17), becomes * 

(D">+g>»)/go=G' 

2govv f 

r=— / 
i J 

dAp [g»yZp2+m,2+g0
2'n2~]-2ptipJ'] igap8(x-y) TrG(x,x)+TrGfl(y-x)Ga(x-y) 

. (1.19) * 

TxlDfi(y-OGa^-x)G(x~-y)^ 
) 

i J (27ryZp2+m2+go2v2J-^go2(vp)2 

If the factor 2go on the right-hand side of Eq. (1.19) 
were replaced by 8go, this equation would be identical = _~v *( __^ (1 2S") 
to the condition equation for the fermion model of I. 'M 

This factor of 4 difference between the two models is Introducing the Fourier representation 
trivial and only reflects the fact that the fermion has 
additional spin degrees of freedom. Because of this ^ , N f .., _ /7N 

^ ° . Dva(z x) = / e ^z~x^DPa(k) 
trivial difference all the discussion and equations of I J 
relevant to the convergence and structure of the condi- ^ . , . tnis becomes tion integral are true in the boson case provided that, in o M r( \ 
the equations, we take account of the factor of 4. rDaix(k)~\~1= (2 )4\ g"̂  I / d4MTr 

In particular, if we introduce a cutoff and make the [ { [_ J \ (2w)A 

definitions 
__ 8g0 r d4p _ 8g0 r d*p +Tr[GM(p)G«(^+*)-^(p)G«(#)G(#+*)])JJ. 
~(2T)HJ p2+nt2' ~i{2irYJ [>2+m2]2 

and 4 (L 2 5 b ) 

/ ? = / To invert, it is necessary to perform specifically the 
(2ir)H J [j>2+m2]3 integrations in this relation. This is done essentially in 

it follows that the same manner as in I. The convenient shorthand 
w'afi(k) is introduced through the definition 

TrqG»(xx)=aQ+WL-^go2v2F)v» (1.20a) 

and hence that the condition (1.18) for rj^O is 7r'«M(^)~ / #p 

l = lQ+WL-&goWF. (1.20b) * 

In this model when the cutoff A->oo Eq. (1.20b) l_± TiG(p)+Tr[G*l(p)Ga(p+k) 
becomes \ (2TTY 

l = goA2/167r2. 
The ground work is now prepared for the study of the 

(2TT)< 

-DK(p)G«(p)G(p+k)l\. (1.26) 
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The zero energy part of ir'"1* is related to the basic 
calculation (1.20) of the theory through the Ward's 
identity 

"(0) = -
-id\ 

XTrl q-

d4p 

( 2 ^ J (2w 

^+gmli) 
)} (px+Mvx) (p\+g°<pi\)+m 

Combining this equation with (1.20a) and the condition 
(1.20b) it follows that 

7r'«"(0) = TrqG»(xx) = g«»- (|go2^)i7 V 
drja 

= gafi-lCrjar. (1.27) 

Here, we have made the definition C= |Fg 0
2 . I t may 

easily be seen that Tr'afi(k)—7r'a"(0) is independent of 
?7M. A direct calculation shows for A/m large that 

ir'<*»(k)= (g»"k2-k»ka)I'(k2) + g<x>*-lCri"ri,i. (1-28) 

Here I'(k2) is the second-order "photon mass" of 
ordinary scalar electrodynamics and is given by 

T(k2) = ~\ L+ / . 

24L 2 JAm* K2[K2+k2-ie] J 

I t follows that 

[D«*(k)yi= {2TYl{g^k2-kak^I\k2)-lCrr~]^ (L29) 
I t is now necessary to make the same decision as in I. 
The last term of this equation, which is of entirely 
different structure from the others, comes from taking 
the cutoff procedure very seriously in the calculation of 
(1.20a). If we did not regard this procedure so seriously, 
the last term would not have occurred. Inverting (1.29) 
with the term results in 

1 r 1 / y}2kak^\ 
D«»(k) = r H 

(2irY\-k2T(k2)\ (vk)2/ 
%kak* 

]• C(vk)2 

Here the convenient notation 

gocn^ gati-.f^V/ri • k—rj^/r) • k 

has been introduced. Thus Dafi(k) describes the propa­
gation of a zero mass photon. This propagator is 
identical in gauge structure to the propagator of I. 
Since it arises from currents in essentially the same way, 
this form is subject to the same difficulty with current 
conservation. If the cutoff is treated in a less literal 

manner we only retain the divergent terms of (1.20) and 
the last term of Eq. (1.28) does not occur. I t is then 
possible to conclude that 

1 1 r kaklx~\ 
D«»(k)= r M • ( i .3i) 

(2ir)4Jfe2I'(fc2)L k2 J 

This propagator is transverse for all values of k and 
consequently is consistent with current conservation. 

I t is easily found that for either of these propagators 
electrodynamics in a constant external field is repro­
duced, if the identification a== 24g0 /£= 247r2/Im(A/m) is 
made. This restriction is consistent with large cutoff A 
and small coupling constant go. 

In conclusion, then, we have found that within the 
framework of the self-coupled charged-boson model it is 
possible to extract a photon without ever inserting a 
photon field operator A11. The propagator for this 
photon differs at most from the ordinary second-order 
electrodynamic propagator by gauge terms. We are 
now prepared to undertake the task of checking the 
consistency of this theory with the operator symmetries 
required by Lorentz invariance. 

II. CONSISTENCY WITH ROTATIONS 

As an expression of the vector nature of the operator 
j M , it is necessary that 

(1A')[/M",ix(^)]= (x>idv—xJ'dfi)jx(x)+gfiXjv—gKvj»(x). 

The application of condition (1.3) to the vacuum 
expectation of this equation yields 

(iA')<o|[/^ixW]|o)=rV-^M-
With the aid of the relation 

J>v= / (P^Qy*: r»(y)-yT°»(y)l 

and the introduction of the quantity 

this equation is equivalent to the two equations 

(1.30) and 

dzyykCv°^(y) = g < V - g x Y (2.1a) 

/ d^y[_ykCv
0lX(y)-y1Cri

0kX(y)'] = gnvk-gXkV1' (2.1b) 

The analysis of these structures with the two forms 
of the photon propagator (1.30) or (1.31) was com­
pletely developed in I. I t was found with the Bjorken 
form of the propagator (1.30) when T?2=0 that 

Crx(k)==l(C1/i)e(kQ)d(k2)g^k^V'k 

+ (C2/;)SMfeV^]. (2.2) 
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I t is necessary that Ci— C2= l/(27r)3. The term propor­
tional to 8(y]-k) is the only one that is present if ??2^0, 
and originates from the term proportional to kxk^/(rj • k)2 

in the photon propagator. Its presence emphasizes 
the current nonconserving aspects of the Bjorken ap­
proximation. The tensor structure kxrjftr)v has been set 
so as to assure energy-momentum conservation. I t is, in 
fact, unlikely that an approximation which violates 
current conservation would respect energy-momentum 
conservation. However, since the rj^rj9 terms do not all 
originate in inverse propagator structures, and will be 
shown to be immune from exact calculation, we exercise 
the prerogative of respecting this symmetry. We do not 
contend that the presence of this term should be taken 
seriously in interpreting broken symmetry phenomena 
since its origin is due primarily to a symmetry-destroy­
ing approximation. Nevertheless, its presence is reason­
able in a charge-nonconserving theory and very sugges­
tive. The term 8(y)-k) in no sense corresponds to a 
normal single-particle excitation in a Lorentz invariant 
theory. I t must be interpreted as representing transi­
tions mediated by j " between the standard vacuum and 
states built on other vacuums whose occurence is 
guaranteed by the broken symmetry requirement (1.3). 
This then is one type of spurious transition related to 
those suggested by Klein and Lee.4 However, it is clear 
that its origin is inextricably bound to the presence of 

the zero mass particle of the theory. As proposed in I, 
we feel that this might be indicative that the statement 
made by the Goldstone theorem5 is always correct in 
fully relativistic theories, although its proof restricted 
to normal spectral weights^is not^sumciently general. 
For the Lorentz gauge form of Da'x(k) given by (1.31) 
it is necessary that 

CV*(*)= (C,/i)e(k°)8(k2)k^(n:k). (2.3) 

Direct calculation with Eq. (2.1) shows that 

C 4 = 1 / ( 2 T T ) 3 . (2.4) 

I t is the responsibility of a consistent calculational 
procedure to explicitly verify Eq. (2.4). 

To perform this calculation we introduce the sym­
metrical energy momentum tensor corresponding to 
(1.1). I t is easily shown that this is 

~hg"vl<t>a<l>a-g^aja+2Jaja+m^'}, (2.5) 

I t may be checked by use of the field equations that 

dM7>0x;) = O. 

Using the definitions made in Sec. I for G, Z>, and O 
it is found that 

*<0<7i|r^(;y)|0(72> 

(Oo-ilOo-a) 
TrlGHy£)Dv)(lP)~]v->y~-*-gd TrqG»(y,y) Trq&(y,y) + 2U^ TrqG'Kyj) 

+h»vlTrtG«(y,Z)Da(&np^o g<fi^qG"(yy)T&qGa(yy)l+2iJ° TrqGa(yy)+m2 TrG(yy)] 

-g&(-iB/6J<") TrqG^+±goig»v(-i8/8J<*) TrqG«. (2.6) 

Hereafter, the last two terms of Eq. (2.6) will be dropped. This is done in order to make this calculation consistent 
with the approximations used to determine G and G* in Sec. I. 

I t is convenient to determine C/" x through the function 

ZVX (?-*) = 
r -id (O^lT^GOlOo-s) i(0a1\8T^(y)/8Jx(x)\0a2y 

A 1 . 
L8Jx(x) <0(7i|0a-2> <0o-i|0(72) 

= i<0| (T^(y)f(x))+ \0)-i(0\ T>»(y)|oy 

L 
by use of the simple procedure outlined in I for transforming time-ordered products into commutators. From 
Eq. (2.6) we find, with the assistance of the equivalents to Eqs. (1.21), (1.22), and (1.23), with / " ^ 0 that 

r / ' H : y - * ) = £ X B ( * ^ 

+ 2goiv
(v\ T r l g ^ ^ - ^ G ^ ) - ^ ^ ^ . (2.7) 

I (2TT)4 J 

In Eq. (2.7) the function ZB(z,y) is defined as 

ZE(z-y)/(2Try^l28{z-y)7]B+TxD«(y,a)LG{8^ 

XTT{gaBKz-y)G{y,y)-Da{yfi)tG{W 

Except for the term proportional to m2, ZB is just the trace on (JJL,V) of the terms preceeding it in Eq. (2.7). If the 
4 A. Klein and B. W. Lee, Phys. Rev. Letters 12, 266 (1964). 
5 J. Goldstone, Nuovo Cimento 19, 154 (1961). J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962). S. A. 

Bludman and A. Klein, ibid. 131, 2364 (1963). 
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Trx(k) = D^B(k{2gBW)+(2Try J Tr(D^(p)lG(p)qGB(p+k)+GB(p)qG(p+k)2D'(p+k)d4p 

-2iW(k)-hgrZB(k)]s3D(k)*BTB'"(k). (2.8) 

We know the structure of all the terms appearing in Eq. (2.8) except for the one of the form 

(2*YJ diplDi'(p)lG(p)qGB(p+k)+GB(p)qG(p+k)']D>(p+k)^E'Bi> '(*) 

Fourier transform of Eq. (2.7) is taken, it follows that 

and the ones proportional to m2 in Zs(ft). The terms 
proportional to m2 have no momentum dependence and 
hence are only of significance to r # ^ ( 0 ) . 

By insertion of the forms for O and G found in Sec. I, 
it is found that E'Bflv(k) is quadratically divergent as 
A -^oo, and odd in 77̂ . A tedious calculation in which 
the cutoff is taken seriously by retaining all finite 
terms which occur with divergent terms yields 

E,B^(k)^EfB^(0)+iF\yjBg^k2+2r)Bk^ 

+ 2k2gB < V } ~ 2kBk (<y}] • (2.9) 

This expression has no part which looks like rj -kgB(fXkv) 

and consequently can make no contribution toward the 
satisfaction of Eq. (2.2). I t takes very little further 
consideration to demonstrate that all contributions to 
these equations must come from the anomalous parts 
of DXB(k) in the form 

-^kB/C(2iry(v.k)2TB>"(0). 

As in I, Ts^iO) involves quadratically divergent terms 
which cannot be calculated from (1.20a) through any 
Ward's identity. Thus TV^O) must be adjusted in 
order to guarantee the satisfaction of Eqs. (2.2). We 
therefore conclude that for 77" time- or light-like that 
the relevant terms of CV*"x(ft) are 

C " * (ft) = [%/ (2TT)3]5 (rj • ft)ft V>?v. 

Thus the consistency, using propagator (1.30), occurs 
in a rather strained manner. 

I t is, however, very simple to check the consistency 
when finite terms occuring with divergent integrals are 
neglected and DXB(k) is in the Lorentz gauge. Then 

(2.9) shows that 
E,B^(k) = E/B^(0). 

By the arguments of I, the momentum-independent 
parts of 2 ^ " (ft) must vanish in this case, so we conclude 
from Eq. (2.8) that 

ZV* (ft) = />**<*)[- l^ticf* (ft) -**'*> (0)] 
+ ^ « [ x % ( f t ) - 7 n / « ( 0 ) ] . 

Using (1.28) and the recipes of I for conversion of a 
time-ordered product into a commutator, (2.10) yields 

C/V\k)= [ l / (27r )^>y^ '^ ( f t ° )5 ( f t 2 ) . 

This is in accordance with (2.3) and (2.4) and hence we 
may conclude that in the Lorentz gauge the scalar 
theory is consistent in an unstrained manner. Equation 
(2.10) clearly illustrates a point which was not so clear 
for the model of I. Namely, the consistency of the theory 
is guaranteed by the zero mass part of the current-
current commutation relations of a conserved current. 

In conclusion, we should like to point out that the 
essence of what we have done here can be reproduced in 
ordinary electrodynamics in the presence of a constant 
external potential. This is equivalent to imposing the 
broken-symmetry-like gauge requirement (01A " 10)=17". 
However, because of the gauge structure of Lorentz 
gauge electrodynamics, no general proof of the vanishing 
of the photon mass results from this procedure.6 
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